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MOTIVE

DUST:  Ranking No. 1  in the aerosol family



MODIS_solzen vs CERES_solzen
Nov. 01, 2000 90W~90E, 50S~50N

(30055 points)
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MODIS_solzen vs CERES_solzen
Nov. 01, 2000 90W~90E, 50S~50N

(28901 points, 4% poinits filtered out)
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Fig.1 Solar zenith match test with the original data (a) and after screening 
process (b).
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Fig. 2  MODIS dust aerosol plumes in Jul 2001 (a) and in Dec 2000(b) 

(a)

(b)



Fig.3 NCEP wind field distribution at 700mb layer in summer months (a) (Jun, Jul., 
and Aug.), and in winter months (b), (Nov, Dec., and Jan).
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Fig. 4. MODIS monthly mean AOD (550nm) in the region of the northwest Africa (45W-0, 15N-25N).
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Fig. 5 Illustration of spring biomass burning aerosol invasion upon the dust targeted 
area with MODIS AOD distribution (a) and NCEP wind flow (b) in Feb. 2001
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Fig. 6  MODIS dust aerosol effective radius in winter (Nov., Dec., and Jan), and in summer 
(Jun., Jul., and Aug.)

MODIS aerosol effective radius in the dust domain 
(45W-0, 15N-25N), winter, average r_eff = 0.6 um,

summer, average r_eff = 0.8 um,

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 0.5 1 1.5 2

Effective radius (um)

F
re

q
u

en
cy

NOV_2000

DEC_2000

JAN_2001

JUN_2001

JUL_2001

AUG_2001



CER_ES8 vs MODIS_TAU, Clear Ocean, (0.2x0.2degrees) 
(45W~20E, 15N~25N, Jul., 2001), 

 cos(solzen)=0.924
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CER_ES8 vs MODIS_TAU, Clear Ocean, (0.2x0.2degrees) 
(45W~0, 15N~25N, Nov., 2000), 

 cos(solzen)=0.737
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Fig. 7 Scatterplot of the CERES clear-sky TOA albedo and the corresponding collocated MODIS AOD over 
ocean off the northwest Africa in July, 2001(a), and in November 2000 (b).

(a)



Comparison of the measured (symbols) with the
simulated aerosol forcing (curves), TOA, Nov., Dec., 2000 & Jan., 2001

aerosol domain(40W-0, 15N-25N),diurnal mean=-18+-9W/m2
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Comparison of the measured (symbols) with the
simulated aerosol forcing (curves), TOA, Jun., Jul., & Aug., 2001

aerosol domain(40W-0, 15N-25N),diurnal mean=-40+-13W/m2
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Fig. 8. Variation of the measured clear-sky dust aerosol radiative forcing efficiency (symbols) with the 
cosine solar zenith. in winter (a) and in summer (b).  The solid lines shows the simulated dust aerosol forcing 
efficiency with the MODIS effective radius in figure 6.
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Fig. 9  Comparison of the dust single scattering albedo and asymmetry factor with the literature values.
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Fig. 10. MODIS  scattering angel distribution on Nov 15, 2000 (a), and on Jul 15, 2001, and its 
histogram (c). Prepared for discussing dust non-spherical influence when Θ>120. 

(a)
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MODIS scattering angle measurements, (45W-0, 15N-25N)
67% pixels with their scattering angles >120 degrees on Nov 15, 2000
82% pixels with their scattering angles >120 degrees on Jul 15, 2001
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Table 1. Comparison of the dust forcing slopes from three linear-fitting methods, direct-fitting, binned-mean 
fitting, binned-minimum fitting.

Time Solar 
zenith 
(degrees)

d(albedo)/dτa
direct-fitting binned-

mean
binned-min

Nov. 
2000

35 ~ 40 0.049 0.045 0.050

40 ~ 45 0.065 0.058 0.049

45 ~ 50 0.068 0.055 0.052

Jul. 
2001

15 ~ 20 0.050 0.042 0.047

20 ~ 25 0.053 0.041 0.061

25 ~ 30 0.058 0.046 0.050

Table 2. Comparison of dust aerosol radiative forcing with literatures.

440/ AOTF ∂∂

No. ω0 TOA (Wm-2) Refs
0.87 ~ 
0.95

-18 ± 6 in winter
-40 ± 11 in summer

our research
MODIS, CERES

1 -60 ~ -81 (, 
July)

Weaver et al., J.
Atmos. Sci., 
59:736-747, 2002. 
TOMS, GCM, 
ERBE, Saharan 
Dust. 2 0.92 -12.8 (over land, 

per
AOD) 

-55.2 (over ocean)

Andreae et al., 
JGR, 
107(D2)101029~, 
2002
Nephelometer.
Negev desert dust, 
Israel

3 0.87 -60 ± 5 (Apr. ,& 
May 

1999) 

James, et al, JGR, 
106(D16),18417-
,2001
Saharan dust , C-
130



Conclusions

1. Diurnal mean dust forcing over 
ocean near the western Africa 
falls into –18 ± 6 W/m2 in winter, 
and  -40± 11 W/m2 in summer.

2. The dust aerosol single scattering
albedo undergoes variation from ~ 
0.87 in winter to ~ 0.95 in 
summer. 
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Plate 1



Fig. 2 (a)
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Fig4.

 Arabian Sea
 (10N~25N, 40E~77E) (1996~2000)
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Radiative Forcing due to Mineral Dust Aerosol in the IR
V. Ramanathan and A. Inamdar

Domain: Arabian Sea (60 – 80 E, 10 – 30 N)
• Mineral dust aerosols play key role in climate forcing. Large uncertanties.
Even the sign of net forcing uncertain

•  because of their non-spherical shape, model estimates are not reliable.

•  MODIS on TERRA with CERES gives us the first opportunity
 to obtain the forcing directly from observations; and thus provide an independent

data set to understand the importance of non-spherical shapes and unknown
dust chemical composition.

 We have just begun looking at the dust in Arabian sea; Next we will look at
Saharan dust





Window flux is influenced by in addition to
AOD, total moisture loading in the
atmosphereic column and temperature.











Slope: -6.3 W m-2

Slope: -6.9 W m-2

(Binned data)





Comparison with other studies

• Hsu, Herman & Weaver (2000 JGR) using TOMS & ERBE
obtain forcing efficiency of –21 to 24 W m-2 for the same region
for July 1985.


